Простой и надёжный металлоискатель своими руками. Как сделать простой металлоискатель своими руками — пошаговая инструкция Простой металлоискатель своими руками на одной микросхеме

Основой предлагаемой известной многим конструкции металлодетектора, является популярная отечественная микросхемка К175ЛЕ5. Металлоискатель работает по принципу биений частот и в своей основе содержит два генератора. Один генератор собран на элементах DD1.1, DD1.2 а второй - на элементах DD1.3. DD1.4. Принципиальная на фото ниже.

Частота первого перестраиваемого генератора зависит от емкости конденсатора С1 и общего сопротивления резисторов R1 и R2. Переменным резистором плавно изменяют частоту генератора в диапазоне частот, установленном подстроечным резистором. Частота другого генератора зависит от параметров поискового колебательного контура L1 С2. Сигналы от генераторов поступают на детектор, выполненный по схеме удвоения напряжения на диодах VD1 и VD2. Нагрузкой детектора являются наушники. На них и выделяется разностный сигнал в виде звука. Конденсатор С5 шунтирует наушники по высокой частоте.


При приближении поисковой катушки к металлическому предмету, происходит изменение частоты генератора на DD1.3, DD1.4. От этого меняется тональность звука. По этому изменению тона и определяют, находится ли железный предмет в зоне поиска. В схеме металлоискателя микросхему К176ЛЕ5 можно заменить на микросхемы К176ЛА7, К561ЛА7, К564ЛА7. Цена такой микросхемы на радиобазаре всего 0,2 доллара. Подстроечный резистор R1 типа СП5-2, переменный R2 - СПО-0,5. Поисковая катушка мотается проводом ПЭЛШО 0,5-0,8.


В моём варианте был собран в металлическом корпусе от селектрора каналов СК-М советского телевизора.


Для питания схемы металлоискателя используется батарея типа «Крона» на 9 вольт или другой аналогичный источник. Испытания показали довольно неплохую работу прибора, поэтому для новичков в радиоэлектронике эту схему можно смело рекомендовать для повторения. Автор статьи: Шимко С.

Обсудить статью ПРИНЦИПИАЛЬНАЯ СХЕМА МЕТАЛЛОИСКАТЕЛЯ

Радио-конструктор: Простой металлоискатель на микросхеме К561ЛА7. (021)

Эта схема металлоискателя из всех простых схем показала наилучшие результаты. С помощью данного устройства можно обнаруживать как чёрные металлы (арматуру в стенах помещений), так и металлические предметы в грунте (как чёрные, так и цветные). Глубина обнаружения зависит от размера металлического предмета (небольшие предметы обнаруживаются на глубине до 12 см). Работа схемы основана на биении частот двух генераторов, собранных на базе отечественной микросхемы К561ЛА7, состоящей из четырёх логических элементов 2И-НЕ (К561ЛА7 можно заменить на К561ЛЕ5 или импортный аналог CD4011). Из схемы видно, что на элементах DD1.3 и DD1.4 собран образцовый генератор, с частотой которого будет сравниваться частота поискового генератора, собранного на элементах DD1.1 и DD1.2. Рассмотрим, как работают элементы схемы: Частота образцового генератора определяется параметрами конденсатора С1 и общим сопротивлением переменных резисторов R1 и R2 и лежит в пределах 200 - 300КГц. Частота поискового генератора задаётся параметрами контура С2,L1 (находится в пределах 100КГц), то есть зависит от ёмкости конденсатора и индуктивности катушки и является постоянной (условно, т.к. стабильность частоты зависит во многом от изменения температуры, напряжения питания, влажности). При работе поискового генератора вырабатывается не только основная частота 100КГц, но и кратные ей гармоники 200КГц, 300КГц, 400КГц и так далее. Чем выше гармоника, тем ниже её уровень. При работе образцового генератора (ОГ) на частоте 300КГц «нужная» нам гармоника поискового генератора (ПГ) - третья, то есть тоже 300КГц. Если мы устанавливаем резисторами R2 и R3 частоту ОГ 305КГц, а частота ПГ равна 100КГц, то третья гармоника ПГ, равная 300КГц (частоты свыше 20КГц уже не определяются на слух), с выхода конденсатора С4 смешивается с частотой ОГ на выходе конденсатора С3. Далее эти частоты поступают на диодный смеситель VD1, VD2, собранный по схеме удвоения напряжения (в один полупериод сигналы с выходов генераторов проходят через диод VD1 и заряжают конденсаторы С3 и С4, во второй полупериод напряжения с выходов генераторов складываются с напряжениями заряженных конденсаторов С3 и С4 и поступают через диод VD2 на головные телефоны Т. Диодный смеситель, выполняя роль детектора, выделяет разностную частоту 305КГц - 300КГц = 5КГц, которая в виде тонального сигнала слышна в наушниках. Почему выбрано такое соотношение частот генераторов 300КГц к 100КГц? Это наиболее оптимальное соотношение. Более высокие гармоники значительно уступают в силе сигнала и уже не прослушиваются в наушниках, а более низкие гармоники не дают такой разницы в изменении частоты, - при попадании металлического предмета в зону приёмной катушки незначительно изменяется её индуктивность, что влияет на частоту ПГ. Например, частота стала не 100.000Гц, а 100.003Гц. Разница в 3 герца на слух мало уловима, но на третьей гармонике 100.003Гц будут равны 300.009Гц, и разница с частотой ОГ будет равна 9Гц, что более заметно на слух и увеличивает чувствительность прибора. Диоды VD1,VD2 могут быть любыми, но обязательно германиевыми. С6 служит для шунтирования высокочастотных составляющих сигнала на выходе смесителя. Наушники головных телефонов надо соединить последовательно (на фото показаны выводы телефонных гнёзд для последовательного подключения стандартных стереонаушников). Все эти правила позволяют наиболее эффективно использовать выходной сигнал, не прибегая к дополнительным усилителям, усложняющим нашу конструкцию. В нашем случае громкость сигнала не влияет на чувствительность прибора. Главное в настройке - установить правильно частоту биений и ориентироваться на её изменение. Теперь к главному элементу нашей схемы - поисковой катушке. От качества её изготовления будет зависеть способность прибора к обнаружению металлических предметов.

Поисковая катушка (ПК) состоит из 50 витков медного провода типа ПЭВ, ПЭЛ, ПЭЛШО диаметром 0,2 - 0,6 мм, намотанных на оправке диаметром 12 - 18см. Способов изготовления ПК несколько. Можно нарисовать окружность диаметром 12 - 18 см на фанере, доске, фанере и др., забить по окружности гвозди, затем намотать вокруг гвоздей катушку, связать её по кругу прочно нитками, потом выдернуть гвозди. Можно намотать катушку на любую соответствующего диаметра круглую пластиковую конструкцию (например, отрезок пластиковой канализационной трубы, нижнюю часть пластмассового ведёрка, которые выбрасываются магазинами после продажи сельди, солений. Лишняя часть отрезается. Намотанную таким образом катушку желательно пропитать лаком или краской (только не нитро! Растворитель повредит лаковую изоляцию провода катушки) чтобы заполнить полости между витками, в которые может в дальнейшем попасть вода. После высыхания катушку необходимо плотно обмотать изолентой по всей поверхности. Для улучшения защитных свойств ПК и уменьшения влияния на неё внешних электрических полей, её необходимо экранировать. Можно сразу намотать катушку на согнутой в окружность и пропиленной по внешней стороне ножовкой по металлу или «болгаркой» с тонким диском медной или алюминиевой трубке, а проще взять алюминиевую фольгу для запекания, разрезать на полосы и этими полосами обмотать от начального до конечного отводов катушку, оставив не намотанным разрыв около 1 - 2 см. В противном случае получится короткозамкнутый виток, который не позволит работать катушке. Учитывая, что не у всех есть возможность припаять «земляной» провод к алюминиевому экрану, можно зачистить 3 - 8 см изоляции с провода, обмотав оголённым концом алюминиевый экран и примотав его плотно изолентой. Желательно изолированные соединительные провода от катушки до платы также экранировать алюминиевой фольгой, соединив её с тем же заземляющим проводом тем же методом, что и в катушке. Настройку прибора можно начинать уже после намотки ПК до её пропитки и экранирования. Всё остальное - это уже усовершенствование прибора. Если всё собрано правильно, то после подключения ПК к схеме и подаче питания (соблюдайте полярность подключения источника питания и правильность установки микросхемы в панельку) в наушниках, при вращении переменного резистора R2 «Грубо», будут слышны биения частот генераторов. При отсутствии специальных приборов (осциллограф, частотомер) работу генераторов можно определить любым вольтметром, подключенным вместо наушников. Отпаяв от диодного смесителя конденсатор С4, вольтметр покажет работу ОГ в виде напряжения приблизительно равного напряжению питания схемы. И наоборот, отпаяв С3, мы увидим по аналогичным показаниям вольтметра работу ПГ. Работа обоих проявляется в прослушивании тона биений в наушниках. Резистор R2 позволяет перестраивать частоту ОГ в широком диапазоне, что проявляется в многократно появляющихся биениях в наушниках. Теперь надо внимательно проверить эти биения, выбрать наиболее «мощные» (резистор R3 должен находиться в среднем положении). При проверке каждой из гармоник, резистор R2 надо установить в такое положение, чтобы «звонкий» тон сигнала шёл на понижение тона. Дальнейшую настройку необходимо проводить резистором R3 «Точно» и добиться того, чтобы тон биений перешёл в хрип и щелчки. Это положение и есть рабочее с максимальной чувствительностью. Далее берём предмет из чёрного металла и подносим к катушке - тон сигнала должен увеличиться. При поднесении к катушке предмета из цветного металла (алюминий, медь, латунь), тон сигнала должен наоборот уменьшиться или полностью сорваться. Если это не происходит или происходит наоборот, необходимо перестроить ОГ на другую гармонику и проделать всё сначала. Как только вы нашли «нужную» гармонику, необходимо запомнить положение R2 и в дальнейшем работать только с R3, максимально настраиваясь на рабочий участок биений. Чем точнее вы на него настроитесь, тем выше будут результаты поиска. После того, как вы поняли принцип работы, можно приступать к совершенствованию поисковой катушки. При сборке схемы металлические части переменных резисторов R2, R3 необходимо соединить с общим (минусовым) проводом, иначе приближение руки к ручке будет влиять на частоту биений. Желательно, для уменьшения влияния внешних факторов, схему прибора поместить в металлический корпус, соединённый с общим

Не так часто, но все же случаются в нашей жизни потери. Например, пошли в лес по грибы по ягоды и обронили ключи. В траве под листьями их будет найти не так просто. Не стоит отчаиваться: нам поможет самодельный металлоискатель, который мы будем делать своими руками. Вот и я решил собрать свой первый металлоискатель . В наше время мало кто решится на изготовление металлодетектора. Самодельные устройства были популярны лет двадцать-двадцать пять тому назад, когда купить их было просто негде.
Современные металлоискатели таких производителей, как Garrett, Fisher и многие другие имеют высокую чувствительность, дискриминацию по металлам, а некоторые и годограф. Они способны настраивать баланс грунта, отстраиваться от электрических помех. Благодаря этому глубина обнаружения современного металлодетектора на монету достигает 40 см.

Схему выбрал не очень сложную, чтобы можно было повторить в домашних условиях. Принцип работы основан на разности биения двух частот, которые мы будем улавливать на слух. Устройство собрано на двух микросхемах, содержит минимум деталей, в то же время имеет кварцевую стабилизацию частоты, благодаря которой прибор устойчиво работает.

Схема металлоискателя на микросхемах

Схема очень проста. Её с лёгкостью можно повторить в домашних условиях. Она построена на двух микросхемах 176 серии. Опорный генератор выполнен на ла9 и стабилизирован кварцем на 1 МГц.У меня этого, к сожалению, не оказалось, пришлось поставить на 1,6 МГц.

Перестраиваемый генератор собран на микросхеме к176ла7. Достичь нулевых биений поможет варикап D1, ёмкость которого меняется в зависимости от положении движка переменного резистора R2. Основой колебательного контура служит поисковая катушка L1, при приближении которой к металлическому предмету изменяется индуктивност, вследствие чего изменяется частота перестраиваемого генератора, что мы и слышим в наушниках.

Наушники я использую обычные от плеера, излучатели которых соединены последовательно, чтобы меньше нагружать выходной каскад микросхемы:

Если громкости окажется слишком много, можно ввести в схему регулятор громкости:

Детали самодельного металлоискателя:

  • Микросхемы; К176ЛА7, К176ЛА9
  • Кварцевый резонатор; 1 МГц
  • Варикап; Д901Е
  • Резисторы; 150к-3шт., 30к-1шт.
  • Резистор переменного сопротивления; 10к-1шт.
  • Конденсатор электролитический;50Мкф/15 вольт
  • Конденсаторы; 0.047-2шт., 100-4шт., 0,022, 4700, 390

Большинство деталей расположены на печатной плате:

Всё устройство я разместил в обычной мыльнице, экранировав от помех алюминиевой фольгой, которую соединил с общим проводом:

Так как для кварца не предусмотрено место на печатной плате, то он располагается отдельно. Гнездо под наушники и регулятор частоты для удобства я вывел с торца мыльницы:

Весь блок металлодетектора при помощи двух хомутиков разместил на отрезке лыжной палки:

Осталась самая ответственная часть: изготовить поисковую катушку.

Катушка для металлоискателя

От качества изготовления катушки будет зависеть чувствительность устройства, стойкость к ложным срабатываниям, так называемым фонтонам. Хотелось бы сразу заметить, что от размера катушки напрямую зависит глубина обнаружения предмета. Так, чем больше диаметр, тем глубже прибор сможет обнаружить цель, но размер этой цели также должен быть больше, например, канализационный люк (маленький предмет с большой катушкой металлоискатель просто не увидит). И наоборот, катушка маленького диаметра способна обнаружить маленький предмет, но находящийся не очень глубоко (например, маленькая монета или кольцо).

Поэтому я сначала намотал катушку среднего размера, так сказать, универсальную. Забегая вперёд, хочу сказать, что металлоискатель задумывался на все случаи жизни, то есть катушки должны быть разного диаметра и их можно менять. Чтобы быстро сменить катушку, я поставил на штангу разъём, который выдернул из старого лампового телевизора:

Ответную часть разъёма я закрепил на катушке:

В качестве каркаса для будущей катушки я использовал пластмассовый ковш, который был куплен в хозяйственном магазине. Диаметр ковша следует подобрать приблизительно равным 200 мм. От ковша следует отрезать часть ручки и днища так, чтобы остался пластмассовый ободок, на который следует намотать 50 витков провода ПЭЛШО диаметром 0,27 миллиметров. На часть оставшейся ручки следует закрепить разъем. Получившуюся катушку изолируем при помощи изоленты в один слой. Затем нам нужно эту катушку заэкранировать от помех. Для этого нам понадобится алюминиевая фольга в виде полосы, которой мы обмотаем сверху так, чтобы концы получившегося экрана не замкнулись и расстояние между ними было приблизительно 20 миллиметров. Получившийся экран следует соединить с общим проводом. Сверху я также обмотал изолентой. Конечно, можно все это пропитать эпоксидным клеем, но я оставил так.

После испытаний большой катушки я понял, что нужно изготовить маленькую, так называемую снайперку, чтобы было легче обнаруживать предметы небольших размеров.

Готовые катушки выглядят вот так:

Настройка готового металлоискателя

Прежде чем начать настраивать металлоискатель, нужно убедиться в отсутствии металлических предметов вблизи поисковой катушки. Настройка заключается в подборе емкости конденсатора C2, для того чтобы получить максимальный уровень биений, который мы слышим в наушниках, так как в сигнале присутствуют множество гармоник(нужно выделить самую сильную). При этом движок переменного резистора R2 должен находиться как можно ближе к середине:

Штанга у меня получилась из двух частей, трубки были подобраны таким образом, что они входят друг в друга очень плотно, благодаря чему не пришлось придумывать специального крепления для этих трубок. Также были изготовлены подлокотник и рукоятка, чтобы было удобно выполнять проводку над землей. Как показала практика, это очень удобно: рука совершенно не устает. В разобранном виде металлоискатель получился очень компактный и умещается буквально в пакет:

Внешний вид готового прибора выглядит вот так:

В заключение хотелось бы сказать, что данный металлоискатель не подходит лицам, которые собираются работать по старине. Так как в нем нет дискриминации по металлам, вам придется копать все подряд. Скорее всего, вы очень сильно разочаруетесь. А вот любителям собирать металлолом данное устройство будет в помощь. Да и просто как развлечение детям.

Фрагменты из книги «Металлоискатели своими руками. Как искать, чтобы найти монеты, украшения, клады». Авторы С. Л. Корякин-Черняк и А. П. Семьян.

Продолжение

Начало читайте здесь:

3.1. Компактный металлоискатель на микросхеме К175ЛЕ5

Назначение

Металлоискатель предназначен для поиска металличе¬cких предметов в грунте. Он может также быть использован при определении места прокладки арматуры и скрытой проводки при проведении строительных работ в доме.

Принциальная схема

Схема компактного металлоискателя на микросхеме типа К175ЛЕ5 приведена на рис. 3.1, а. Он содержит два генератора (опорный и поисковый). Поисковый генератор собран на элементах DD1.1, DD1.2, а опорный - на элементах DD1.3 и DD1.4.

Частота поискового генератора, выполненного на элементах DD1.1 и DD1.2, зависит:

  • от емкости конденсатора С1;
  • от общего сопротивления подстроечного и переменного резисторов R1 и R2.

Переменным резистором R2 плавно изменяют частоту поискового генератора в диапазоне частот, установленном подстроечным резистором R1. Частота генератора на элементах DD1.3 и DD1.4 зависит от параметров колебательного контура L1, С2.

Сигналы с обоих генераторов поступают через конденсаторы C3 и С4 на детектор, выполненный по схеме удвоения напряжения на диодах VD1 и VD2.

Нагрузкой детектора являются наушники BF1, на которых выделяется разностный сигнал в виде низкочастотной составляющей, преобразуемый наушниками в звук.

Параллельно наушникам включен конденсатор С5, который шунтирует их по высокой частоте. При приближении поисковой катушки L1 к металлическому предмету происходит изменение частоты генератора на элементах DD1.3, DD1.4, в результате меняется тональность звука в наушниках. По этому признаку и определяют, находится ли в зоне поиска металлический предмет.

Примененные детали и варианты замены элементов

Подстроечный резистор R1 типа СП5-2, переменный резистор R2 - СПО-0,5. Допустимо использовать в схеме и другие типы резисторов, желательно малогабаритные.

Электролитический конденсатор С6 типа К50-12 - на напряжение не менее 10 В. Остальные постоянные конденсаторы типа КМ-6.

Катушка L1 размещается в кольце диаметром 200 мм, согнутом из медной или алюминиевой трубки с внутренним диаметром 8 мм. Между концами трубки должен быть небольшой изолированный зазор, чтобы не было короткозамкнутого витка. Катушка наматывается проводом ПЭЛШО 0,5.

В качестве наушников BF1 можно использовать головные телефоны ТОН-1, ТОН-2.

Для питания металлоискателя используется батарея типа «Крона» или другие типы батарей напряжением 9 В.

В схеме металлоискателя микросхему К176ЛЕ5 можно заменить на микросхемы К176ЛА7, К176ПУ1, К176ПУ2, К561ЛА7, К564ЛА7, К561ЛН2.

Монтаж устройства

Детали устройства, кроме катушки индуктивности, источника питания и наушников, могут быть размещщены на печатной плате, вырезанной из фольгированного стеклотекстолита толщиной 1 мм (рис. 3.1, б). Возможно использование и другого вида печатной платы.

К одному концу разъема крепится ручка из металлической трубки, а к другому его концу с помощью переходника из изоляционного материала крепится металлическое кольцо с катушкой L1.

Общий вид устройства приведен на рис. 3.1, г, а размещение элементов устройства - на рис. 3.1, в.

Настройка

Перед наладкой металлоискателя подстроечный и переменный резисторы нужно поставить в среднее положение и замкнуть контакты SB1. Перемещая движок подстроенного резистора R1, добиться наиболее низкого тона в наушниках.

При отсутствии звука следует подобрать емкость конденсатора С2. При появлении сбоев в работе металлоискателя следует впаять между выводами 7 и 14 микросхемы DD1 конденсатор емкостью 0.01…0.1 мкФ.

Источник
Яворский В. Металлоискатель на К176ЛЕ5. // Радио, 1999, №8, с. 65.

Из книги С. Л. Корякин-Черняк, А. П. Семьян. « »

Продолжение читайте

Рассмотрим простенький металлоискатель на микросхеме K561ЛА7 и усилителе звука. Питание осуществляется напряжением 9 вольт. Так как ток потребления маленький, батарейки крона хватает на длительное время. По характеристикам прибор имеет средние показатели глубины обнаружения, достойные для такой простой схемы. Существуют похожие металлоискатели на микросхемах K561ЛА9, но они не дают значительного прироста показателей, поэтому отдаем предпочтение сборке данной упрощенной схемы.

В обнаружении металла главную роль играет датчик, состоящий из круглой катушки, корпуса и соединительного провода к схеме управления (рис. 1).

Появление в зоне действия датчика металла отражается на индуктивности катушки, которая, в свою очередь, влияет на частоту поисковой цепи на микроконтроллере. Конечный логический элемент микросхемы сравнивает эталонную величину частоты и частоту поисковой цепи и через усилитель выдает разницу в виде тонального звука в динамике.

Изготовление датчика

Схемы металлоискателей для разных устройств полностью отличаются друг от друга. Однако качественно собранный датчик может использоваться как универсальный для различных металлоискателей, работающих по одному принципу работы.

Для обмотки датчика используем лакированный провод ПЭВ или ПЭЛ диаметром 0,5 – 0,7 мм, который без проблем можно найти в магазине или старых кинескопных телевизорах и мониторах (рис. 2).

При диаметре катушки 20 см наматываем 100 витков провода. При других диаметрах изменяем количество витков, рассчитывая, что при 25 и 15 см диаметра наматывается 80 и 120 витков соответственно. После выполнения обмотки плотно обматываем ее изолентой, оставляя с запасом начало и конец провода.

Изготавливаем экран Фарадея, чтобы исключить различные помехи в катушке и микроконтроллерах. Необходимо обмотать катушку поверх изоленты пищевой фольгой. В конце обмотки фольгу не соединяем и оставляем разрыв в 2-3 см. Поверх фольги наматываем вразброс немного неизолированного провода маленького сечения (рис. 3).

В нескольких местах можно выполнить пайку провода и фольги. Все это снова обматываем изолентой.

После произведенных действий у нас должна получиться изолированная катушка с двумя вывода обмотки и выводом экрана. Соединяем их с экранированным кабелем от видео или аудиоаппаратуры. Экран кабеля соединяем с проводом от фольги, а жилы кабеля с проводами от катушки. Все это пропаиваем и надежно изолируем изолентой. На конце кабеля приделываем штекер с качественными контактами. Лучший вариант, если они позолоченные или серебряные. Штекер можно найти в кабелях для различной аппаратуры, там же берем и разъем.

Остается сделать корпус для катушки. Можно использовать два круглых диска из диэлектрического материала – фанеры, толстого картона или пластика. Между дисками помещаем обмотку. Затем пластмассовыми креплениями, которые можно приобрести в сантехническом магазине, плотно скрепляем эти два диска. Для поиска в водной среде можно герметизировать датчик эпоксидной смолой или специальными герметиками.

На верхнем диске прикручиваем или приклеиваем ушки из пластика или другого диэлектрического материала. Они понадобятся для крепления к штанге (рис. 4).

Комплектующие для схемы

Ниже описаны основные детали и требования к ним, необходимые для качественной сборки схемы:

  1. Конденсаторы рекомендуется закупать в радиомагазине, но если хочется получить их бесплатно из старых схем, то измеряйте емкость перед использованием. Главное требование к ним – температурная устойчивость, это спасет вас от постоянных сбоев металлоискателя. Отлично подойдут керамические или слюдяные. При сборке не забываем учитывать полярность электролитических конденсаторов – на бочонке в стороне минуса нарисованы одна или несколько полосок (рис. 5). Понадобятся следующие конденсаторы: электролитический 100 мкФ х 16 В – 1 шт.; 1000 пФ – 3 шт.; 22 нФ – 2 шт.; 300 пФ – 1 шт.

  1. Постоянные резисторы можно использовать старые, так как они не теряют свои характеристики с течением времени. Переменные лучше всего купить новые, чтобы обеспечить точную настройку частоты на микросхемах. Особое внимание стоит уделить контактам переменного резистора, так как по схеме два контакта должны быть соединены между собой, а опыт показывает, что многие новички этого не замечают. Так же необходимо заземлить их корпус для исключения помех при регулировке. Понадобятся 5 постоянных резисторов номиналами 22 Ом, 1кОм, 4,7 кОм, 10 кОм, 470 кОм и 3 переменных резистора номиналами 1, 5 и 20 кОм.
  2. Микросхема K561ЛА7 в DIP корпусе. Отсчет ног на микросхемах начинается сверху против часовой стрелке от ключа – специальной выемки на корпусе. В качестве аналога можно сделать металлоискатель на микросхеме K561ЛЕ5 или CD4011.
  3. Транзистор KT315 очень распространен в старой радиоаппаратуре. Но его можно заменить множеством других транзисторов: KT3102, BC546, 2SC639 и схожие по характеристикам маломощные низкочастотные транзисторы. Внимательно изучаем выводы транзистора перед пайкой, у KT315 они расположены слева направо от лицевой части – эмиттер, коллектор, база (рис. 6):

  1. Диод выбираем любой маломощный из отечественных или импортных производителей – кд522Б, кд105, кд106, in4148, in4001 и другие. Перед пайкой прозванием его мультиметром, чтобы не перепутать местами анод и катод.
  2. Стандартные наушники от телефона или mp3 плеера, или миниатюрный динамик со старой техники. В случае использования наушников можно использовать разъем или прямую пайку.
  3. Батарейка крона 9 В и контакты для нее (рис. 7):

  1. Разъем для штекера кабеля датчика подбираем заранее, при изготовлении датчика.

После сборки всех необходимых деталей, можно смело приступать к монтажу их по схеме, описанной ниже.

Монтаж схемы управления

Электрическая схема состоит из микросхемы K561ЛА7, ее обвязки для регулировки, усилителя, питания и динамика. Микросхема имеет 4 логических элемента. Двое из них создают нужную частоту, третий играет роль поисковой части. Конечный логический элемент сравнивает обе частоты и при разных значениях выдает положительный сигнал на усилитель, который подает усиленный сигнал на динамик.

Схема металлоискателя на микросхеме, описанной выше, изображена на рисунке 8.

Собирать электрические принципиальные схемы очень удобно на макетной плате с отверстиями (рис.9). Или изготавливаем самодельную печатную плату, изображенную на рисунке 10. Изготовить плату можно лазерно-утюжным методом или обычным рисованием. Травлю производим любым известным способом.

Производим пайку деталей и припаиваем проводками все выносные детали – регуляторы, разъем для наушников, датчика и батарейки.

После сборки схемы, закрепляем ее в корпусе. Туда же помещаем батарейку. В качестве корпуса подойдет пластмассовая, монтажная, самодельная из дерева и другие коробки на ваш выбор (рис. 11).

Для трех регуляторов и разъема датчика необходимо проделать соответствующие размерам отверстия. Можно последовательно батарейке добавить выключатель и так же вынести его на корпус. Необходимо предусмотреть маленькие отверстия для динамика, или, в случае с наушниками, плотно закрепить разъем.

Главным условием при сборке корпуса является доступность, например для смены батареи, и, в то же время, герметичность – от внезапного дождя. Можно закрепить красивые колпачки на регуляторы, разукрасить коробку и подписать регуляторы с выключателем.

Сборка и настройка устройства

Когда датчик и блок управления готовы, необходимо связать их в готовый металлоискатель. Для этого понадобится штанга. Сделать ее можно из ПВХ труб и переходников, которые путем подогрева подогнуть под нужные размеры и форму. Можно так же воспользоваться обычным деревянным шестом, костылем или телескопической удочкой. Какие материалы выбрать зависит от ваших предпочтений – учитывайте вес, гибкость и длину. Для удобства можно соорудить ручку и подлокотник, а так же сделать штангу разборной (рис. 12).

Далее закрепляем датчик с готовыми ушками к штанге. Воспользуйтесь пластиковым крепежом, надежным клеем или сантехническими переходниками. Таким же образом закрепляем блок управления.

Чтобы произвести настройку, подключаем батарейку и датчик. Так как металлоискатели являются чувствительными устройствами, то для правильной настройки необходимо убрать все металлические предметы вокруг. Включаем его и наблюдаем один из двух вариантов:

Если после включения идеальная тишина или еле слышный писк, то тут два варианта:

а) Генераторы работают на одной частоте. Такие случаи редкие, но бывают. Попробуйте покрутить регуляторы плавной R7 и грубой R8 настройки. Если тишина сменится на громкий тональный звук, то схема работает. Возвращаем регуляторы в начальное положение и пытаемся плавным регулятором R7 добиться наилучших результатов, например полного отсутствия звука;

б) Неисправность схемы. Внимательно перепроверяем всю схему и радиодетали.

Если после включения идет гул или высокий тон , то пробуем уменьшить его вращением регулятора грубой настройки R8, а достигнув лучшего результата, подстраиваем R7. Если металлоискатель не реагирует на вращение регуляторов, то частота эталонного генератора слишком отличается от частоты поисковой цепи. В таком случае пробуем поймать нужную частоту изменением конденсатора С6 и резистора R6.

Всю настройку значительно может упростить осциллограф. Суть настройки заключается в том, чтобы добиться одинаковой или близкой по величине частоты выводов 5 и 6 на микроконтроллере. Регулировку частоты можно производить вышеописанными способами.

Если вы осилили сборку данного устройства, можете смело попробовать собрать более сложный металлоискатель на трех микросхемах или микроконтроллере.